Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The hippocampus is critical for spatial memory formation in rodents. Calcium currents through L-type voltage-sensitive calcium channels (L-VSCCs) are increased in CA1 neurons of the hippocampus of aged rats. We have recently shown that expression of the calcium conducting L-VSCC subunit alpha(1D) (Ca(v)1.3) is selectively increased in area CA1 of aged rats. We and others have speculated that excessive Ca(2+) influx through L-VSCC may be detrimental to memory formation. Therefore, we investigated the relationship between age-related working memory decline and alpha(1D) protein expression in the hippocampus. In addition, we studied the effects of chronic treatment with the L-VSCC antagonist nimodipine (NIM) on age-related working memory deficits and alpha(1D) expression in the hippocampus. Here we report that age-related increases in alpha(1D) expression in area CA1 correlate with working memory impairment in Fischer 344 rats. Furthermore, we demonstrate that chronic NIM treatment ameliorates age-related working memory deficits and reduces expression of alpha(1D) protein in the hippocampus. The present results suggest that L-VSCCs participate in processes underlying memory formation and that increases in L-VSCC protein and currents observed with aging may play a role in age-related memory decline. Furthermore, the amelioration in age-related memory decline produced by NIM treatment may be mediated, at least in part, by reductions in the abnormally high levels of alpha(1D) protein in the aged hippocampus. These findings may have implications for patients with Alzheimer's disease, who show increased L-VSCC protein expression in the hippocampus, and for patients receiving chronic treatment with L-VSCC antagonists.

Type

Journal article

Journal

Brain Res Mol Brain Res

Publication Date

20/02/2003

Volume

110

Pages

193 - 202

Keywords

Aging, Animals, Calcium Channel Blockers, Calcium Channels, Calcium Channels, L-Type, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Calcium-Calmodulin-Dependent Protein Kinases, Hippocampus, Maze Learning, Memory Disorders, Neurons, Nimodipine, Rats, Rats, Inbred F344, Reaction Time, Receptors, N-Methyl-D-Aspartate, Synapses, Synaptic Transmission