Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Many studies in biological psychiatry compare the abundance of individual messenger RNAs between cases and control subjects or, more recently, between genotype groups. Most utilize some form of normalization procedure, usually expressing the transcript(s) of interest relative to that of a housekeeping gene or genes (also called reference genes), to overcome various sources of experimental error. Indeed, normalization is such a standard procedure that its purpose, principles, and limitations are sometimes overlooked, and some papers lack sufficient information as to its implementation. Here, we review the rationales for normalization and argue that in well-conducted psychiatric gene expression studies using human brain tissue, it is reducing intersubject variability rather than experimental error that is the major benefit of normalization. We also review the conceptual and empirical basis for the category of housekeeping genes-i.e., genes with a ubiquitous and invariant expression. We conclude that the evidence is against any such simple categorization and that a more pragmatic, less dogmatic, approach to the selection and implementation of reference genes is required, which takes into account the particular issues that pertain to human brain tissue studies. This pragmatism extends to the issue of whether normalization should be to one or multiple reference genes. We end by making several recommendations toward a more flexible, transparent, and comprehensive approach to data presentation and analysis. We illustrate the review with examples from studies of schizophrenia and mood disorder.

Original publication

DOI

10.1016/j.biopsych.2010.05.023

Type

Journal article

Journal

Biol Psychiatry

Publication Date

15/01/2011

Volume

69

Pages

173 - 179

Keywords

Brain, Brain Chemistry, Case-Control Studies, Gene Expression Profiling, Humans, Mental Disorders, Nerve Tissue Proteins, Neuropsychiatry, Oligonucleotide Array Sequence Analysis, Reference Standards