Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Using machine learning (AI) techniques to analyse complex cohort data, a group of researchers uncovered hidden patterns in cohort data that might identify those at risk of developing dementia, or indicate promising areas for research into treatments.

With dementia set to triple by 2050, scientists are looking for ways to accelerate and innovate dementia research so that the disease can be diagnosed much earlier and prevented from progressing. Datathons provide a safe space where dementia researchers and data scientists can collaborate and answer some of the most pressing research questions on dementia.


How can machine-learning help innovate dementia research?

Over three days in May a group of 22 researchers, with backgrounds ranging from astrophysics to biomedical science, joined a Dementias Platform UK (DPUK) datathon at the University of Exeter to innovate the understanding of the origins of dementia using machine learning.

The researchers interrogated real-world clinical data looking at health trajectories in those with mild cognitive impairment (MCI), temporal clustering of dementia diagnosis and temporal back trajectories from dementia to predict risk factors. One group identified people with a dementia diagnosis who then went on to improve in later cognitive assessments. The groups focused on three research topic areas:

  • Can we create an accurate risk prediction model based on health trajectories over time using real-world data?
  • Do dementia diagnosis cluster over time and is it possible to identify risk criteria of those clusters?
  • Can we model the trajectory of progress from MCI to dementia diagnosis?

 

The datathon was incredibly inspiring. What gives me great hope is that all of the groups are intending to take their collaborative work through to publication to enable other researchers to share their insights. - Dr Sarah Bauermeister, Senior Researcher & Senior Data Manager at University of Oxford.

“Machine learning helps researchers speed up of the process of analysing complex and varied real world data and assists in developing prediction models for dementia. The power of machine learning tools are that they can quickly extract features in the data – like improvements in cognitive scores over time by those with a dementia diagnosis. I’m very much looking forward to an analysis of which factors influence cognitive improvement including the origins of potential misdiagnosis”.

 

 

 

Dr David Llewelyn, Associate Professor of Neuroepidemiology and Digital Health, at the University of Exeter Medical School, said: “The Datathon was a fantastic success largely because of the talented, diverse and engaged people who came. It was a great example of how different organisations can work together to really drive things forward”.


The Datathon is supported by the Alan Turing Institute, Alzheimer’s Research UK, Dementias Platform UK and the University of Exeter.


Further information:

 

NIHR OXFORD HEALTH BIOMEDICAL RESEARCH CENTRE NEWS

Please follow the link below to read the news on the NIHR BRC website.

Similar stories

Parental Mental Health Worse Since New National Restrictions

COVID-19 Child and adolescent Early intervention Mental Health Psychological therapy

Parental stress, depression, and anxiety have again increased since new national restrictions have been introduced according to the latest report from the Oxford University led COVID-19 Supporting Parents, Adolescents, and Children in Epidemics (Co-SPACE) study based on data from over 6000 UK parents.

Potential New Target to Prevent or Delay Dementia

Alzheimer's disease Dementia Mental Health Old-age psychiatry

New study shows targeting arterial stiffening earlier in a person’s lifespan could provide cognitive benefits in older age and may help to delay the onset of dementia.

Return to School Leads to Improvement in Children's Mental Health

Anxiety COVID-19 Child and adolescent Early intervention Mental Health

Latest report from the Co-SPACE (COVID-19 Supporting Parents, Adolescents, and Children in Epidemics) survey highlights that for participating primary school aged children behavioural and restless/attentional difficulties increased between March and June. These difficulties generally decreased from July.

Multi-million-pound Renewal of Funding for DPUK's Dementia Research

Awards Dementia Mental Health Old-age psychiatry

The UK's Medical Research Council (MRC) has confirmed renewal of funding for Dementias Platform UK (DPUK), in partnership with industry and the third sector.

27th British Isles Research Workshop on Suicide and Self-Harm & Lancet Psychiatry Suicide Symposium

Events Mental Health Suicide and self-harm

These two annual meetings organised by the Centre for Suicide Research, University of Oxford, for researchers from the UK and Ireland were merged into two virtual workshops this year. The first focused on research related to the impact of the Covid-19 pandemic on suicide and self-harm and the second on other research in the field of suicidal behaviour.

New Research to Tackle COVID-19 Impact on Mental Health Received £2m Boost

COVID-19 Child and Adolescent Psychiatry Child and adolescent Early intervention Mental Health Psychological therapy

Professor Cathy Creswell, based in the Departments of Experimental Psychology and Psychiatry has been awarded £495k for research to evaluate an online therapy programme for children with anxiety problems, to see if it is an effective remote alternative to existing mental health treatment services and could help treat anxiety problems during the COVID-19 pandemic.