Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Passive exercise occurs when an individual's limbs are moved via an external force and is a modality that increases cerebral blood flow (CBF) and provides an immediate postexercise executive function (EF) benefit. To our knowledge, no work has examined for how long passive exercise benefits EF. Here, healthy young adults (N = 22; 7 female) used a cycle ergometer to complete three 20-min conditions: passive exercise (via mechanically driven flywheel), a traditional light intensity (37 W) "active" exercise condition (i.e., via volitional pedalling) and a non-exercise control condition. An estimate of CBF was obtained via transcranial Doppler ultrasound measurement of middle cerebral artery blood velocity (MCAv) and antisaccades (i.e., saccade mirror-symmetrical to a target) were completed prior to and immediately, 30- and 60-min following each condition to assess EF. Passive and active exercise increased MCAv; however, the increase was larger in the latter condition. In terms of antisaccades, passive and active exercise provided an immediate postexercise reaction time benefit. At the 30-min assessment, the benefit was observed for active but not passive exercise and neither produced a benefit at the 60-min assessment. Thus, passive exercise provided an evanescent EF "boost" and is a finding that may reflect a smaller cortical hemodynamic response.

Original publication

DOI

10.1016/j.bandc.2023.105953

Type

Journal article

Journal

Brain Cogn

Publication Date

03/2023

Volume

166

Keywords

Antisaccade, Cognition, Cortical hemodynamics, Oculomotor, Vision, Young Adult, Humans, Female, Executive Function, Saccades, Middle Cerebral Artery, Cerebrovascular Circulation, Reaction Time, Blood Flow Velocity