Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

IMPORTANCE: Alterations in glutamatergic neurotransmission may be fundamental to the pathophysiology of schizophrenia, and the glutamatergic system is a target for novel therapeutic interventions in the disorder. OBJECTIVE: To investigate the nature of brain glutamate alterations in schizophrenia by conducting a meta-analysis of glutamate proton magnetic resonance (MRS) spectroscopy studies. DATA SOURCES: The MEDLINE database was searched for studies published from January 1, 1980, to April 1, 2015. Search terms included magnetic resonance spectroscopy, schizophrenia, psychosis, clinical or genetic high risk, and schizoaffective. Inclusion criteria were single voxel 1H-MRS studies reporting glutamate, glutamine or Glx values for a patient or risk group in comparison to a healthy volunteer group. STUDY SELECTION: Fifty-nine studies were identified, which included 1686 patients and 1451 healthy individuals serving as controls. DATA EXTRACTION AND SYNTHESIS: A random-effects, inverse-weighted variance model was used to calculate the pooled effect size. Mean values were extracted and verified independently. Effect sizes were determined for glutamate, glutamine, and Glx in brain regions that had been examined in at least 3 different studies. A secondary analysis grouped studies into those examining patients at different stages of illness (high risk, first-episode psychosis, or chronic schizophrenia). Effects of age, antipsychotic dose, and symptom severity were determined using meta-regression. RESULTS: In schizophrenia, there were significant elevations in glutamate in the basal ganglia (Hedges g = 0.63; 95% CI, 0.15-1.11), glutamine in the thalamus (g = 0.56; 95% CI, 0.02-1.09), and Glx in the basal ganglia (g = 0.39; 95% CI, 0.09-0.70) and medial temporal lobe (g = 0.32; 95% CI, 0.12-0.52). No region showed a reduction in glutamate metabolites in schizophrenia. Secondary analyses revealed that elevated medial frontal Glx levels were evident in individuals at high risk for schizophrenia (g = 0.26; 95% CI, 0.05-0.46) but not in those with first-episode psychosis or chronic schizophrenia, whereas elevated Glx in the medial temporal lobe was seen with chronic schizophrenia (g = 0.40; 95% CI, 0.08-0.71) but not in the high-risk or first-episode groups. Meta-regression found no association with age, symptom severity, or antipsychotic dose. CONCLUSIONS AND RELEVANCE: Schizophrenia is associated with elevations in glutamatergic metabolites across several brain regions. This finding supports the hypothesis that schizophrenia is associated with excess glutamatergic neurotransmission in several limbic areas and further indicates that compounds that reduce glutamatergic transmission may have therapeutic potential.

Original publication

DOI

10.1001/jamapsychiatry.2016.0442

Type

Journal article

Journal

JAMA Psychiatry

Publication Date

01/07/2016

Volume

73

Pages

665 - 674

Keywords

Brain, Brain Mapping, Genetic Predisposition to Disease, Glutamic Acid, Glutamine, Humans, Proton Magnetic Resonance Spectroscopy, Reference Values, Risk Factors, Schizophrenia, Synaptic Transmission