Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Major depression (MD) is the most prevalent psychiatric disease in the population and is considered a prodromal stage of the Alzheimer's disease (AD). Despite both diseases having a robust genetic component, the common transcriptomic signature remains unknown. METHODS: We investigated the cognitive and emotional behavioural responses in 3- and 6-month-old APP/PSEN1-Tg mice, before β-amyloid plaques were detected. We studied the genetic and pathway deregulation in the prefrontal cortex, striatum, hippocampus and amygdala of mice at both ages, using transcriptomic and functional data analysis. RESULTS: We found that depressive-like and anxiety-like behaviours, as well as memory impairments, are already present at 3-month-old APP/PSEN1-Tg mutant mice together with the deregulation of several genes, such as Ciart, Grin3b, Nr1d1 and Mc4r, and other genes including components of the circadian rhythms, electron transport chain and neurotransmission in all brain areas. Extending these results to human data performing GSEA analysis using DisGeNET database, it provides translational support for common deregulated gene sets related to MD and AD. CONCLUSIONS: The present study sheds light on the shared genetic bases between MD and AD, based on a comprehensive characterization from the behavioural to transcriptomic level. These findings suggest that late MD could be an early manifestation of AD.

Original publication




Journal article


Alzheimers Res Ther

Publication Date





Alzheimer’s disease, Behaviour, Comorbidity, Gene Set Enrichment Analysis, Major depression, Transcriptome, Alzheimer Disease, Amyloid beta-Peptides, Amyloid beta-Protein Precursor, Animals, Comorbidity, Depression, Depressive Disorder, Major, Disease Models, Animal, Mice, Mice, Transgenic, Transcriptome