Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Robust automated segmentation of white matter hyperintensities (WMHs) in different datasets (domains) is highly challenging due to differences in acquisition (scanner, sequence), population (WMH amount and location) and limited availability of manual segmentations to train supervised algorithms. In this work we explore various domain adaptation techniques such as transfer learning and domain adversarial learning methods, including domain adversarial neural networks and domain unlearning, to improve the generalisability of our recently proposed triplanar ensemble network, which is our baseline model. We used datasets with variations in intensity profile, lesion characteristics and acquired using different scanners. For the source domain, we considered a dataset consisting of data acquired from 3 different scanners, while the target domain consisted of 2 datasets. We evaluated the domain adaptation techniques on the target domain datasets, and additionally evaluated the performance on the source domain test dataset for the adversarial techniques. For transfer learning, we also studied various training options such as minimal number of unfrozen layers and subjects required for fine-tuning in the target domain. On comparing the performance of different techniques on the target dataset, domain adversarial training of neural network gave the best performance, making the technique promising for robust WMH segmentation.

Original publication

DOI

10.1016/j.media.2021.102215

Type

Journal article

Journal

Med Image Anal

Publication Date

17/08/2021

Volume

74

Keywords

Deep learning, Domain adaptation, Segmentation, White matter hyperintensities