The unidirectional prosaccade switch-cost: no evidence for the passive dissipation of an oculomotor task-set inertia.
Tari B., Edgar C., Persaud P., Dalton C., Heath M.
Cognitive flexibility is a core component of executive function and supports the ability to 'switch' between different tasks. Our group has examined the cost associated with switching between a prosaccade (i.e., a standard task requiring a saccade to veridical target location) and an antisaccade (i.e., a non-standard task requiring a saccade mirror-symmetrical to veridical target) in predictable (i.e., AABB) and unpredictable (e.g., AABAB…) switching paradigms. Results have shown that reaction times (RTs) for a prosaccade preceded by an antisaccade (i.e., task-switch trial) are longer than when preceded by its same task-type (i.e., task-repeat trial), whereas RTs for antisaccade task-switch and task-repeat trials do not differ. The asymmetrical switch-cost has been attributed to an antisaccade task-set inertia that proactively delays a subsequent prosaccade (i.e., the unidirectional prosaccade switch-cost). A salient question arising from previous work is whether the antisaccade task-set inertia passively dissipates or persistently influences prosaccade RTs. Accordingly, participants completed separate AABB (i.e., A = prosaccade, B = antisaccade) task-switching conditions wherein the preparation interval for each trial was 'short' (1000-2000 ms; i.e., the timeframe used in previous work), 'medium' (3000-4000 ms) and 'long' (5000-6000 ms). Results demonstrated a reliable prosaccade switch-cost for each condition (ps