Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cognitive flexibility is a core component of executive function and supports the ability to 'switch' between different tasks. Our group has examined the cost associated with switching between a prosaccade (i.e., a standard task requiring a saccade to veridical target location) and an antisaccade (i.e., a non-standard task requiring a saccade mirror-symmetrical to veridical target) in predictable (i.e., AABB) and unpredictable (e.g., AABAB…) switching paradigms. Results have shown that reaction times (RTs) for a prosaccade preceded by an antisaccade (i.e., task-switch trial) are longer than when preceded by its same task-type (i.e., task-repeat trial), whereas RTs for antisaccade task-switch and task-repeat trials do not differ. The asymmetrical switch-cost has been attributed to an antisaccade task-set inertia that proactively delays a subsequent prosaccade (i.e., the unidirectional prosaccade switch-cost). A salient question arising from previous work is whether the antisaccade task-set inertia passively dissipates or persistently influences prosaccade RTs. Accordingly, participants completed separate AABB (i.e., A = prosaccade, B = antisaccade) task-switching conditions wherein the preparation interval for each trial was 'short' (1000-2000 ms; i.e., the timeframe used in previous work), 'medium' (3000-4000 ms) and 'long' (5000-6000 ms). Results demonstrated a reliable prosaccade switch-cost for each condition (ps 

Original publication

DOI

10.1007/s00221-022-06394-8

Type

Journal article

Journal

Exp Brain Res

Publication Date

08/2022

Volume

240

Pages

2061 - 2071

Keywords

Antisaccade, Cognitive flexibility, Executive function, Saccade, Task switching, Executive Function, Humans, Reaction Time, Saccades, Time Perception