Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Female mammals produce milk to feed their newborn offspring before teeth develop and permit the consumption of solid food. Intestinal enterocytes dramatically alter their biochemical signature during the suckling-to-weaning transition. The transcriptional repressor Blimp1 is strongly expressed in immature enterocytes in utero, but these are gradually replaced by Blimp1(-) crypt-derived adult enterocytes. Here we used a conditional inactivation strategy to eliminate Blimp1 function in the developing intestinal epithelium. There was no noticeable effect on gross morphology or formation of mature cell types before birth. However, survival of mutant neonates was severely compromised. Transcriptional profiling experiments reveal global changes in gene expression patterns. Key components of the adult enterocyte biochemical signature were substantially and prematurely activated. In contrast, those required for processing maternal milk were markedly reduced. Thus, we conclude Blimp1 governs the developmental switch responsible for postnatal intestinal maturation.

Original publication

DOI

10.1073/pnas.1105852108

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

28/06/2011

Volume

108

Pages

10585 - 10590

Keywords

Animals, Enterocytes, Female, Gene Expression Profiling, Intestines, Male, Mice, Repressor Proteins, Transcription Factors, Transcription, Genetic