Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Exposure of conscious guinea pigs to cigarette smoke results in bronchial hyperresponsiveness. To examine the mechanisms involved, we measured airway responses to increasing doses of intravenous or inhaled acetylcholine in guinea pigs exposed to cigarette smoke (n = 20) or to air (n = 20). After exposure the guinea pigs were anesthetized, paralyzed, and studied in a pressure-sensitive body plethysmograph while ventilated through a tracheostomy. Two and 6 puffs of an aerosol of increasing concentrations (0.05 to 500 micrograms/ml) of acetylcholine were delivered via the tracheostomy. Intravenous acetylcholine was delivered in boluses of 0.1 ml of increasing concentrations (0.5 to 50,000 micrograms/ml) via a catheter in an external jugular vein. Pulmonary resistance (RL), dynamic compliance (Cdyn), and heart rate (HR) were measured at baseline (after aerosolized or intravenous saline) and after each dose of acetylcholine. The peak responses to both inhaled and intravenous acetylcholine were rapid in onset (less than 15 s), short-lived (3 to 4 breaths), and were noncumulative. The baseline RL, Cdyn, and HR were not different in the smoke and air exposure groups. In the intravenous acetylcholine group, there were no differences in RL, Cdyn, and HR responses between the air and smoke exposure groups. In the inhaled acetylcholine group, the dose-response curve was shifted to the left (p less than 0.05) and reached a higher maximal response (p less than 0.01) after smoke exposure.(ABSTRACT TRUNCATED AT 250 WORDS)

Original publication




Journal article


Am Rev Respir Dis

Publication Date





1158 - 1162


Acetylcholine, Administration, Inhalation, Airway Resistance, Animals, Dose-Response Relationship, Drug, Guinea Pigs, Heart Rate, Injections, Intravenous, Lung Compliance, Plants, Toxic, Smoke, Nicotiana