Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The purpose of neuroimaging meta-analysis is to localize the brain regions that are activated consistently in response to a certain intervention. As a commonly used technique, current coordinate-based meta-analyses (CBMA) of neuroimaging studies utilize relatively sparse information from published studies, typically only using (x,y,z) coordinates of the activation peaks. Such CBMA methods have several limitations. First, there is no way to jointly incorporate deactivation information when available, which has been shown to result in an inaccurate statistic image when assessing a difference contrast. Second, the scale of a kernel reflecting spatial uncertainty must be set without taking the effect size (e.g., Z-stat) into account. To address these problems, we employ Gaussian-process regression (GPR), explicitly estimating the unobserved statistic image given the sparse peak activation "coordinate" and "standardized effect-size estimate" data. In particular, our model allows estimation of effect size at each voxel, something existing CBMA methods cannot produce. Our results show that GPR outperforms existing CBMA techniques and is capable of more accurately reproducing the (usually unavailable) full-image analysis results.

Original publication




Journal article


IEEE Trans Med Imaging

Publication Date





1401 - 1416


Bayes Theorem, Brain, Computer Simulation, Humans, Magnetic Resonance Imaging, Normal Distribution, ROC Curve, Regression Analysis