Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Rat superior cervical ganglion (SCG) neurons express low-threshold noninactivating M-type potassium channels (I(K(M))), which can be inhibited by activation of M(1) muscarinic receptors (M(1) mAChR) and bradykinin (BK) B(2) receptors. Inhibition by the M(1) mAChR agonist oxotremorine methiodide (Oxo-M) is mediated, at least in part, by the pertussis toxin-insensitive G-protein Galpha(q) (Caulfield et al., 1994; Haley et al., 1998a), whereas BK inhibition involves Galpha(q) and/or Galpha(11) (Jones et al., 1995). Galpha(q) and Galpha(11) can stimulate phospholipase C-beta (PLC-beta), raising the possibility that PLC is involved in I(K(M)) inhibition by Oxo-M and BK. RT-PCR and antibody staining confirmed the presence of PLC-beta1, -beta2, -beta3, and -beta4 in rat SCG. We have tested the role of two PLC isoforms (PLC-beta1 and PLC-beta4) using antisense-expression constructs. Antisense constructs, consisting of the cytomegalovirus promoter driving antisense cRNA corresponding to the 3'-untranslated regions of PLC-beta1 and PLC-beta4, were injected into the nucleus of dissociated SCG neurons. Injected cells showed reduced antibody staining for the relevant PLC-beta isoform when compared to uninjected cells 48 hr later. BK inhibition of I(K(M)) was significantly reduced 48 hr after injection of the PLC-beta4, but not the PLC-beta1, antisense-encoding plasmid. Neither PLC-beta antisense altered M(1) mAChR inhibition by Oxo-M. These data support the conclusion of Cruzblanca et al. (1998) that BK, but not M(1) mAChR, inhibition of I(K(M)) involves PLC and extends this finding by indicating that PLC-beta4 is involved.


Journal article


J Neurosci

Publication Date





Animals, Bradykinin, Cells, Cultured, Isoenzymes, Microinjections, Muscarinic Antagonists, Neurons, Oligonucleotides, Antisense, Phospholipase C beta, Plasmids, Potassium Channel Blockers, Potassium Channels, RNA, Messenger, Rats, Rats, Sprague-Dawley, Superior Cervical Ganglion, Type C Phospholipases