Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The routine molecular test for spinal muscular atrophy (SMA) diagnosis is based on the detection of a homozygous deletion of exons 7 and 8 of the telomeric copy of the survival motor neuron gene (SMN1). The presence of the centromeric copy of the SMN gene (SMN2) does not allow the detection of the hemizygous absence of the SMN1 gene, which characterizes the disease carriers. The demand for a quantitative SMN1 test is permanently growing because there is a high incidence of carriers. The disease is severe and to date there are no effective pharmacological treatments. Here, we present a non-radioactive assay based on real time quantitative polymerase chain reaction. We analyzed eight SMA patients, 14 SMA relatives and 50 health individuals from Southern Italy by real time quantitative method in order to identify haploid deletion occurring in SMA carriers. SMN1 copy number was determined by the comparative threshold cycle method (ΔΔCt). The results confirmed the deletion in all homozygous patients and permitted an evaluation of the number of alleles in the healthy carriers. This method is fast, reproducible, and enables us to discriminate carriers from healthy homozygous, which is impossible with normal techniques.

Original publication




Journal article


J Pediatr Genet

Publication Date





99 - 102


SMA, SMN1, quantitative assay, real time PCR