Characterization and validation of new tools for measuring site-specific cardiac troponin I phosphorylation.
Thoemmes SF., Stutzke CA., Du Y., Browning MD., Buttrick PM., Walker LA.
Phosphorylation of cardiac troponin I is a well established mechanism by which cardiac contractility is modulated. However, there are a number of phosphorylation sites on TnI which contribute singly or in combination to influence cardiac function. Accordingly, methods for accurately measuring site-specific TnI phosphorylation are needed. Currently, two strategies are employed: mass spectrometry, which is costly, difficult and has a low throughput; and Western blotting using phospho-specific antibodies, which is limited by the availability of reagents. In this report, we describe a cohort of new site-specific TnI phosphoantibodies, generated against physiologically relevant phosphorylation sites, that are superior to the current commercially available antibodies: to phospho-serine 22/23 which shows a >5-fold phospho-specificity for phosphorylated TnI; to phospho-serine 43, which has >3-fold phospho-specificity for phosphorylated TnI; and phospho-serine 150 which has >2-fold phospho-specificity for phosphorylated TnI. These new antibodies demonstrated greater sensitivity and specificity for the phosphorylated TnI than the most widely used commercially available reagents. For example, at a protein load of 20 μg of total cardiac extract, a commercially available antibody recognized both phosphorylated and dephosphorylated TnI to the same degree. At the same protein load our phospho-serine 22/23 antibody exhibited no cross-reactivity with dephosphorylated TnI. These new tools should allow a more accurate assessment and a better understanding of the role of TnI phosphorylation in the response of the heart to pathologic stress.