Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

When preparing to perform a task, the brain settles into task-set states which are relevant for the selection of the appropriate task-rules and stimulus-response mappings. The way this selection takes place within the Language domain is not well understood. We used high-density electrophysiological recordings while participants were engaged in a task in which cues directed their attention to the orthography, phonology or semantics of upcoming target words (or to the shape of novel symbols). To study the specificity of the brain preparatory states to different goals within the language domain, we contrasted the topographical maps associated with the cues for these different tasks, and explored whether the need of task-set reconfiguration modulated this preparatory activity. As a complement to the topographical analyses, we compared the amplitude of the cue-locked ERPs across task conditions. The topographical maps differed only at the end of the epoch. During this time window, each task-cue generated distinct topographical activity, which was also different depending on whether it involved a switch in task-set or not. These results suggest that, when the time of target onset approaches, the generators of anticipatory-biasing brain states for different language tasks vary depending on the nature of the task.

Original publication




Journal article



Publication Date





1151 - 1160


Adult, Analysis of Variance, Attention, Brain, Brain Mapping, Cues, Electroencephalography, Evoked Potentials, Visual, Female, Humans, Linguistics, Male, Pattern Recognition, Visual, Photic Stimulation, Reaction Time