Third external replication of an individualised transdiagnostic prediction model for the automatic detection of individuals at risk of psychosis using electronic health records.
Puntis S., Oliver D., Fusar-Poli P.
BACKGROUND: Primary indicated prevention is a key target for reducing the incidence and burden of schizophrenia and related psychotic disorders. An individualised, clinically-based transdiagnostic model for the detection of individuals at risk of psychosis has been developed and validated in two large, urban healthcare providers. We tested its external validity in a geographically and demographically different non-urban population. METHOD: Retrospective EHR cohort study. All individuals accessing secondary healthcare provided by Oxford Health NHS Foundation Trust between 1st January 2011 and 30th November 2019 and receiving a primary index diagnosis of a non-psychotic or non-organic mental disorder were considered eligible. The previously developed model was applied to this database and its external prognostic accuracy was measured with Harrell's C. FINDINGS: The study included n = 33,710 eligible individuals, with an average age of 27.7 years (SD = 19.8), mostly white (92.0%) and female (57.3%). The mean follow-up was 1863.9 days (SD = 948.9), with 868 transitions to psychosis and a cumulative incidence of psychosis at 6 years of 2.9% (95%CI: 2.7-3.1). Compared to the urban development database, Oxford Health was characterised by a relevant case mix, lower incidence of psychosis, different distribution of baseline predictors, higher proportion of white females, and a lack of specialised clinical services for at risk individuals. Despite these differences the model retained an adequate prognostic performance (Harrell's C = 0.79, 95%CI: 0.78-0.81), with no major miscalibration. INTERPRETATION: The transdiagnostic, individualised, clinically-based risk calculator is transportable outside urban healthcare providers. Further research should test transportability of this risk prediction model in an international setting.