Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background: Risk estimation models integrated into Electronic Health Records (EHRs) can deliver innovative approaches in psychiatry, but clinicians' endorsement and their real-world usability are unknown. This study aimed to investigate the real-world feasibility of implementing an individualised, transdiagnostic risk calculator to automatically screen EHRs and detect individuals at-risk for psychosis. Methods: Feasibility implementation study encompassing an in-vitro phase (March 2018 to May 2018) and in-vivo phase (May 2018 to April 2019). The in-vitro phase addressed implementation barriers and embedded the risk calculator (predictors: age, gender, ethnicity, index cluster diagnosis, age*gender) into the local EHR. The in-vivo phase investigated the real-world feasibility of screening individuals accessing secondary mental healthcare at the South London and Maudsley NHS Trust. The primary outcome was adherence of clinicians to automatic EHR screening, defined by the proportion of clinicians who responded to alerts from the risk calculator, over those contacted. Results: In-vitro phase: implementation barriers were identified/overcome with clinician and service user engagement, and the calculator was successfully integrated into the local EHR through the CogStack platform. In-vivo phase: 3722 individuals were automatically screened and 115 were detected. Clinician adherence was 74% without outreach and 85% with outreach. One-third of clinicians responded to the first email (37.1%) or phone calls (33.7%). Among those detected, cumulative risk of developing psychosis was 12% at six-month follow-up. Conclusion: This is the first implementation study suggesting that combining precision psychiatry and EHR methods to improve detection of individuals with emerging psychosis is feasible. Future psychiatric implementation research is urgently needed.

Original publication

DOI

10.1016/j.schres.2020.05.007

Type

Journal article

Journal

Schizophrenia Research

Publication Date

01/01/2021

Volume

227

Pages

52 - 60