Extract from article originally published in The Conversation
Genetic factors play a major role in schizophrenia but scientists are only now beginning to identify the specific genes involved. A new study published in Nature Neuroscience shows that rare mutations in the SETD1A gene dramatically increase the risk of developing schizophrenia. This implicates a specific biological pathway in schizophrenia, which may also be of significance beyond the condition.
Brain development
Patients with schizophrenia can experience hallucinations and delusions, as well as a lack of motivation and problems with social interactions. Schizophrenia affects around 1% of the population. There is no cure and better treatments are desperately needed.
Most scientists believe that the symptoms seen in patients with schizophrenia result from changes in the way in which the brain develops. These changes result in part from environmental factors (such as birth complications), but genes also play a major role.
The genetic basis of schizophrenia is complex. There are hundreds, if not thousands, of genes that contribute to a person’s risk of becoming ill, meaning that genetic samples from huge numbers of patients and healthy people are needed to prove the involvement of a given gene.
To add further complexity, there are lots of difference types of genetic changes that can occur within these genes to alter risk.
At one end of the spectrum are individual “letter” changes in the DNA sequence that that are common in the population as a whole, and individually have only a tiny effect on risk. At the other end of the spectrum are large-scale DNA changes, for example the deletion or duplication of whole genes, or groups of genes, which are rare but have a much greater effect on the likelihood that someone will become ill. Both these small, common variants and large DNA changes can be easily measured and analysed, and both have been shown to be important in schizophrenia. However, small-scale genetic changes that are rare are much more difficult to detect and might also be involved in schizophrenia.
Read the full article in The Conversation
Read more about Professor Elizabeth Tunbridge