Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Increases in axonal sodium currents in peripheral nerves are some of the earliest excitability changes observed in Amyotrophic Lateral Sclerosis (ALS) patients. Nothing is known, however, about axonal sodium channels more proximally, particularly at the action potential initiating region - the axon initial segment (AIS). Immunohistochemistry for Nav1.6 sodium channels was used to investigate parameters of AISs of spinal motoneurones in the G127X SOD1 mouse model of ALS in adult mice at presymptomatic time points (~190 days old). In vivo intracellular recordings from lumbar spinal motoneurones were used to determine the consequences of any AIS changes. AISs of both alpha and gamma motoneurones were found to be significantly shorter (by 6.6% and 11.8% respectively) in G127X mice as well as being wider by 9.8% (alpha motoneurones). Measurements from 20-23 day old mice confirmed that this represented a change during adulthood. Intracellular recordings from motoneurones in presymptomatic adult mice, however, revealed no differences in individual action potentials or the cells ability to initiate repetitive action potentials. To conclude, despite changes in AIS geometry, no evidence was found for reduced excitability within the functional working range of firing frequencies of motoneurones in this model of ALS.

Original publication

DOI

10.1038/s41598-019-57314-w

Type

Journal article

Journal

Sci Rep

Publication Date

28/01/2020

Volume

10

Keywords

Amino Acid Substitution, Amyotrophic Lateral Sclerosis, Animals, Axons, Disease Models, Animal, Humans, Mice, Mice, Transgenic, Motor Neurons, Mutation, Missense, Superoxide Dismutase-1, Synaptic Transmission