Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The human brain consists of specialized areas that flexibly interact to form a multitude of functional networks. Complementary to this notion of modular organization, brain function has been shown to vary along a smooth continuum across the whole cortex. We demonstrate a mathematical framework that accounts for both of these perspectives: harmonic modes. We calculate the harmonic modes of the brain's functional connectivity graph, called "functional harmonics," revealing a multi-dimensional, frequency-ordered set of basis functions. Functional harmonics link characteristics of cortical organization across several spatial scales, capturing aspects of intra-areal organizational features (retinotopy, somatotopy), delineating brain areas, and explaining macroscopic functional networks as well as global cortical gradients. Furthermore, we show how the activity patterns elicited by seven different tasks are reconstructed from a very small subset of functional harmonics. Our results suggest that the principle of harmonicity, ubiquitous in nature, also underlies functional cortical organization in the human brain.

Original publication

DOI

10.1016/j.celrep.2021.109554

Type

Journal article

Journal

Cell Rep

Publication Date

24/08/2021

Volume

36

Keywords

brain networks, fMRI, functional connectivity, harmonic modes, human cortex