Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background: The effects of cannabis are thought to be mediated by interactions between its constituents and the endocannabinoid system. Delta-9-tetrahydrocannabinol (THC) binds to central cannabinoid receptors, while cannabidiol (CBD) may influence endocannabinoid function without directly acting on cannabinoid receptors. We examined the effects of THC coadministered with different doses of CBD on plasma levels of endocannabinoids in healthy volunteers. Methods: In a randomized, double-blind, four-arm crossover study, healthy volunteers (n=46) inhaled cannabis vapor containing 10 mg THC plus either 0, 10, 20, or 30 mg CBD, in four experimental sessions. The median time between sessions was 14 days (IQR=20). Blood samples were taken precannabis inhalation and at 0-, 5-, 15-, and 90-min postinhalation. Plasma concentrations of THC, CBD, anandamide, 2-arachidonoylglycerol (2-AG), and related noncannabinoid lipids were measured using liquid chromatography-mass spectrometry. Results: Administration of cannabis induced acute increases in plasma concentrations of anandamide (+18.0%, 0.042 ng/mL [95%CI: 0.023-0.062]), and the noncannabinoid ethanolamides, docosatetraenylethanolamide (DEA; +35.8%, 0.012 ng/mL [95%CI: 0.008-0.016]), oleoylethanolamide (+16.1%, 0.184 ng/mL [95%CI: 0.076-0.293]), and N-arachidonoyl-L-serine (+25.1%, 0.011 ng/mL [95%CI: 0.004-0.017]) (p<0.05). CBD had no significant effect on the plasma concentration of anandamide, 2-AG or related noncannabinoid lipids at any of three doses used. Over the four sessions, there were progressive decreases in the preinhalation concentrations of anandamide and DEA, from 0.254 ng/mL [95%CI: 0.223-0.286] to 0.194 ng/mL [95%CI: 0.163-0.226], and from 0.039 ng/mL [95%CI: 0.032-0.045] to 0.027 ng/mL [95%CI: 0.020-0.034] (p<0.05), respectively. Discussion: THC induced acute increases in plasma levels of anandamide and noncannabinoid ethanolamides, but there was no evidence that these effects were influenced by the coadministration of CBD. It is possible that such effects may be evident with higher doses of CBD or after chronic administration. The progressive reduction in pretreatment anandamide and DEA levels across sessions may be related to repeated exposure to THC or participants becoming less anxious about the testing procedure and requires further investigation. The study was registered on clinicaltrials.gov (NCT05170217).

Original publication

DOI

10.1089/can.2022.0174

Type

Journal article

Journal

Cannabis Cannabinoid Res

Publication Date

09/12/2022

Keywords

2-arachidonoylglycerol, CBD, THC, anandamide, cannabis, endocannabinoids