Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Alternating between different tasks represents an executive function essential to activities of daily living. In the oculomotor literature, reaction times (RT) for a 'standard' and stimulus-driven (SD) prosaccade (i.e., saccade to target at target onset) are increased when preceded by a 'non-standard' antisaccade (i.e., saccade mirror-symmetrical to target at target onset), whereas the converse switch does not elicit an RT cost. The prosaccade switch-cost has been attributed to lingering neural activity-or task-set inertia-related to the antisaccade executive demands of response suppression and vector inversion. It is, however, unclear whether response suppression and/or vector inversion contribute to the prosaccade switch-cost. Experiment 1 of the present work had participants alternate (i.e., AABB paradigm) between minimally delayed (MD) pro- and antisaccades. MD saccades require a response after target extinction and necessitate response suppression for both pro- and antisaccades-a paradigm providing a framework to determine whether vector inversion contributes to a task-set inertia. In Experiment 2, participants alternated between SD pro- and MD antisaccades-a paradigm designed to determine if a switch-cost is selectively imparted when a SD and standard response is preceded by a non-standard response. Experiment 1 showed that RTs for MD pro- and antisaccades were refractory to the preceding trial-type; that is, vector inversion did not engender a switch-cost. Experiment 2 indicated that RTs for SD prosaccades were increased when preceded by an MD antisaccade. Accordingly, response suppression engenders a task-set inertia but only for a subsequent stimulus-driven and standard response (i.e., SD prosaccade). Such a result is in line with the view that response suppression is a hallmark feature of executive function.

Original publication




Journal article


Exp Brain Res

Publication Date





3475 - 3484


Executive function, Oculomotor, Response suppression, Task-switching, Adult, Executive Function, Female, Humans, Inhibition, Psychological, Male, Psychomotor Performance, Reaction Time, Saccades, Young Adult