Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Genomic prediction shows promise for personalised medicine in which diagnosis and treatment are tailored to individuals based on their genetic profiles for complex diseases. We present a theoretical framework to demonstrate that prediction accuracy can be improved by targeting more informative individuals in the data set used to generate the predictors ("discovery sample") to include those with genetically close relationships with the subjects put forward for risk prediction. Increase of prediction accuracy from closer relationships is achieved under an additive model and does not rely on any family or interaction effects. Using theory, simulations and real data analyses, we show that the predictive accuracy or the area under the receiver operating characteristic curve (AUC) increased exponentially with decreasing effective size (Ne), i.e. when individuals are closely related. For example, with the sample size of discovery set N = 3000, heritability h2 = 0.5 and population prevalence K = 0.1, AUC value approached to 0.9 and the top percentile of the estimated genetic profile scores had 23 times higher proportion of cases than the general population. This suggests that there is considerable room to increase prediction accuracy by using a design that does not exclude closer relationships.

Original publication




Journal article


Sci Rep

Publication Date





Computer Simulation, Family, Genetic Diseases, Inborn, Genomics, Humans, Precision Medicine, ROC Curve, Risk Assessment, Statistics as Topic