Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

There is growing evidence of shared risk alleles for complex traits (pleiotropy), including autoimmune and neuropsychiatric diseases. This might be due to sharing among all individuals (whole-group pleiotropy) or a subset of individuals in a genetically heterogeneous cohort (subgroup heterogeneity). Here we describe the use of a well-powered statistic, BUHMBOX, to distinguish between those two situations using genotype data. We observed a shared genetic basis for 11 autoimmune diseases and type 1 diabetes (T1D; P < 1 × 10(-4)) and for 11 autoimmune diseases and rheumatoid arthritis (RA; P < 1 × 10(-3)). This sharing was not explained by subgroup heterogeneity (corrected PBUHMBOX > 0.2; 6,670 T1D cases and 7,279 RA cases). Genetic sharing between seronegative and seropostive RA (P < 1 × 10(-9)) had significant evidence of subgroup heterogeneity, suggesting a subgroup of seropositive-like cases within seronegative cases (PBUHMBOX = 0.008; 2,406 seronegative RA cases). We also observed a shared genetic basis for major depressive disorder (MDD) and schizophrenia (P < 1 × 10(-4)) that was not explained by subgroup heterogeneity (PBUHMBOX = 0.28; 9,238 MDD cases).

Original publication

DOI

10.1038/ng.3572

Type

Journal article

Journal

Nat Genet

Publication Date

07/2016

Volume

48

Pages

803 - 810

Keywords

Arthritis, Rheumatoid, Autoimmune Diseases, Computational Biology, Databases, Genetic, Depressive Disorder, Major, Diabetes Mellitus, Type 1, Gene Expression Regulation, Genetic Markers, Genetic Pleiotropy, Genetic Predisposition to Disease, Humans, Models, Statistical, Polymorphism, Single Nucleotide