Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Forty patients with a major depressive episode were investigated at rest using Single Photon Emission Tomography (SPET or SPECT) with 99mTc-exametazime, an intravenous ligand taken into brain in proportion to regional cerebral blood flow, thereby providing an estimate of regional metabolism. All patients were unipolar and were rated on the Newcastle scale and with the 17-item Hamilton scale. They also completed a range of neuropsychological tests. They were compared with 20 control subjects matched for age, gender, premorbid intelligence and education. The uptake of 99mTc-exametazime was expressed for a range of anatomically defined regions of interest relative to calcarine/occipital cortex. The depressed group showed reduced uptake in the majority of cortical and sub-cortical regions examined, most significantly in temporal, inferior frontal and parietal areas. Unexpectedly, there was a strong positive association between uptake and scores on the Newcastle scale, especially in cingulate areas and frontal cortex. After removing the variance attributable to the Newcastle ratings, however, there emerged the expected negative association between Hamilton scores and anterior tracer uptake. The associations between neuropsychological impairment and regional brain uptake of tracer in part reflected the pattern seen with the Newcastle scale: for example, impairment of memory function correlated with higher uptake into posterior cingulate areas. We propose that depressive illness may be characterised by two processes. One leads to an overall reduction in anterior neocortical function, perhaps related to symptom severity. The other mechanism is manifest as relatively increased function, most notably within cingulate and frontal areas of the cerebral cortex in association with psychotic symptoms. The findings offer new understanding of the brain states underlying depressive illness and a potential focus to subsequent neuropharmacological analysis.

Original publication




Journal article


J Affect Disord

Publication Date





31 - 43


Adult, Affective Disorders, Psychotic, Brain, Brain Mapping, Depressive Disorder, Energy Metabolism, Female, Frontal Lobe, Humans, Male, Middle Aged, Neuropsychological Tests, Neurotic Disorders, Organotechnetium Compounds, Oximes, Personality Inventory, Regional Blood Flow, Technetium, Technetium Tc 99m Exametazime, Tomography, Emission-Computed, Single-Photon