Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In this article we study the use of SPECT perfusion imaging for the diagnosis of Alzheimer's disease. We present a classifier based approach that does not need any explicit knowledge about the pathology. We directly use the voxel intensities as features. This approach is compared with three classical approaches: regions of interests, statistical parametric mapping and visual analysis which is the most commonly used method. We tested our method both on simulated and on real data. The realistic simulations give us total control about the ground truth. On real data, our method was more sensitive than the human experts, while having an acceptable specificity. We conclude that an automatic method can be a useful help for clinicians. © Springer-Verlag Berlin Heidelberg 2004.

Original publication

DOI

10.1007/978-3-540-30136-3_80

Type

Conference paper

Publication Date

01/01/2004

Volume

3217

Pages

654 - 662