Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The evolution of medical imaging technologies and computer graphics is leading to dramatic improvements for medical training, diagnosis and treatment, and patient understanding. This paper discusses how volumetric visualization and 3D scanning can be integrated with cadaveric dissection to deliver benefits in the key areas of clinician-patient communication and medical education. The specific area of medical application is a prevalent musculoskeletal disorder - iliotibial (IT) band syndrome. By combining knowledge from cadaveric dissection and volumetric visualization, a virtual laboratory was created using the Unity 3D game engine, as an interactive education tool for use in various settings. The system is designed to improve the experience of clinicians who had commented that their earlier training would have been enhanced by key features of the system, including accurate three-dimensional models generated from computed tomography, high resolution cryosection images of the Visible Human dataset, and surface anatomy generated from a white light scan of an athlete. The finding from the virtual laboratory concept is that knowledge gained through dissection helps enhance the value of the model by incorporating more detail of the distal attachments of the IT band. Experienced clinicians who regularly treat IT band syndrome were excited by the potential of the model and keen to make suggestions for future enhancement. © 2013 IEEE.

Original publication

DOI

10.1109/ICCMA.2013.6506143

Type

Conference paper

Publication Date

21/05/2013