Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We investigate how brain activity can be supported by a turbulent regime based on the deviations of a self-similar scaling of high-order structure functions within the phenomenological Kolmogorov's theory. By analyzing a large neuroimaging data set, we establish the relationship between scaling exponents and their order, showing that brain activity has more than one invariant scale, and thus orders higher than 2 are needed to accurately describe its underlying statistical properties. Furthermore, we build whole-brain models of coupled oscillators to show that high-order information allows for a better description of the brain's empirical information transmission and reactivity.

Original publication

DOI

10.1103/PhysRevResearch.5.033183

Type

Journal article

Journal

Physical Review Research

Publication Date

01/07/2023

Volume

5