Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Anopheles stephensi mosquitoes expressing m1C3, m4B7, or m2A10 single-chain antibodies (scFvs) have significantly lower levels of infection compared to controls when challenged with Plasmodium falciparum, a human malaria pathogen. These scFvs are derived from antibodies specific to a parasite chitinase, the 25 kDa protein and the circumsporozoite protein, respectively. Transgenes comprising m2A10 in combination with either m1C3 or m4B7 were inserted into previously-characterized mosquito chromosomal "docking" sites using site-specific recombination. Transgene expression was evaluated at four different genomic locations and a docking site that permitted tissue- and sex-specific expression was researched further. Fitness studies of docking site and dual scFv transgene strains detected only one significant fitness cost: adult docking-site males displayed a late-onset reduction in survival. The m4B7/m2A10 mosquitoes challenged with P. falciparum had few or no sporozoites, the parasite stage infective to humans, in three of four experiments. No sporozoites were detected in m1C3/m2A10 mosquitoes in challenge experiments when both genes were induced at developmentally relevant times. These studies support the conclusion that expression of a single copy of a dual scFv transgene can completely inhibit parasite development without imposing a fitness cost on the mosquito.

Original publication

DOI

10.1073/pnas.1207738109

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

10/07/2012

Volume

109

Pages

E1922 - E1930

Keywords

Animals, Animals, Genetically Modified, Anopheles, Binding Sites, Culicidae, Female, Gene Expression Regulation, Gene Expression Regulation, Developmental, Genetic Engineering, In Situ Hybridization, Fluorescence, Male, Models, Genetic, Plasmids, Plasmodium falciparum, Single-Chain Antibodies, Sporozoites, Transgenes