Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A multitude of prediction models for a first psychotic episode in individuals at clinical high-risk (CHR) for psychosis have been proposed, but only rarely validated. We identified transition models based on clinical and neuropsychological data through a registered systematic literature search and evaluated their external validity in 173 CHRs from the Personalised Prognostic Tools for Early Psychosis Management (PRONIA) study. Discrimination performance was assessed with the area under the receiver operating characteristic curve (AUC), and compared to the prediction of clinical raters. External discrimination performance varied considerably across the 22 identified models (AUC 0.40−0.76), with two models showing good discrimination performance. None of the tested models significantly outperformed clinical raters (AUC = 0.75). Combining predictions of clinical raters and the best model descriptively improved discrimination performance (AUC = 0.84). Results show that personalized prediction of transition in CHR is potentially feasible on a global scale. For implementation in clinical practice, further rounds of external validation, impact studies, and development of an ethical framework is necessary.

Original publication

DOI

10.1016/j.neubiorev.2021.02.032

Type

Journal article

Journal

Neuroscience and Biobehavioral Reviews

Publication Date

01/06/2021

Volume

125

Pages

478 - 492