Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Music is a non-verbal human language, built on logical, hierarchical structures, that offers excellent opportunities to explore how the brain processes complex spatiotemporal auditory sequences. Using the high temporal resolution of magnetoencephalography, we investigated the unfolding brain dynamics of 70 participants during the recognition of previously memorized musical sequences compared to novel sequences matched in terms of entropy and information content. Measures of both whole-brain activity and functional connectivity revealed a widespread brain network underlying the recognition of the memorized auditory sequences, which comprised primary auditory cortex, superior temporal gyrus, insula, frontal operculum, cingulate gyrus, orbitofrontal cortex, basal ganglia, thalamus, and hippocampus. Furthermore, while the auditory cortex responded mainly to the first tones of the sequences, the activity of higher-order brain areas such as the cingulate gyrus, frontal operculum, hippocampus, and orbitofrontal cortex largely increased over time during the recognition of the memorized versus novel musical sequences. In conclusion, using a wide range of analytical techniques spanning from decoding to functional connectivity and building on previous works, our study provided new insights into the spatiotemporal whole-brain mechanisms for conscious recognition of auditory sequences.

Original publication

DOI

10.1093/cercor/bhae320

Type

Journal article

Journal

Cereb Cortex

Publication Date

01/08/2024

Volume

34

Keywords

brain spatiotemporal dynamics, functional connectivity, magnetoencephalography (MEG), memory, sequence recognition, Humans, Male, Female, Music, Adult, Magnetoencephalography, Auditory Perception, Young Adult, Brain, Recognition, Psychology, Brain Mapping, Nerve Net, Acoustic Stimulation