Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The approximately 20-Hz component of the human mu rhythm originates predominantly in the primary motor cortex. We monitored with a whole-scalp neuromagnetometer the reactivity of the approximately 20-Hz rhythm as an index of the functional state of the primary motor cortex in seven patients suffering from Unverricht-Lundborg type (ULD) progressive myoclonus epilepsy (PME) and in seven healthy control subjects. In patients, the motor cortex rhythm was on average 5 Hz lower in frequency and its strength was double compared with controls. To study reactivity of the approximately 20-Hz rhythm, left and right median nerves were stimulated alternately at wrists. In controls, these stimuli elicited a small transient decrease, followed by a strong increase ("rebound") of the approximately 20-Hz level. In contrast, the patients showed no significant rebounds of the rhythm. As the approximately 20-Hz rebounds apparently reflect increased cortical inhibition, our results indicate that peripheral stimuli excite motor cortex for prolonged periods in patients with ULD.

Original publication

DOI

10.1006/nimg.2000.0660

Type

Journal article

Journal

Neuroimage

Publication Date

12/2000

Volume

12

Pages

707 - 712

Keywords

Adolescent, Brain Mapping, Dominance, Cerebral, Electric Stimulation, Female, Humans, Magnetoencephalography, Male, Median Nerve, Motor Cortex, Myoclonic Epilepsies, Progressive, Neural Inhibition, Somatosensory Cortex