Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

To study the role of brain oscillations in working memory, we recorded the scalp electroencephalogram (EEG) during the retention interval of a modified Sternberg task. A power spectral analysis of the EEG during the retention interval revealed a clear peak at 9-12 Hz, a frequency in the alpha band (8-13 Hz). In apparent conflict with previous ideas according to which alpha band oscillations represent brain "idling", we found that the alpha peak systematically increased with the number of items held in working memory. The enhancement was prominent over the posterior and bilateral central regions. The enhancement over posterior regions is most likely explained by the well known alpha rhythm produced close to the parietal-occipital fissure, whereas the lateral enhancement could be explained by sources in somato-motor cortex. A time-frequency analysis revealed that the enhancement was present throughout the last 2.5 s of the 2.8 s retention interval and that alpha power rapidly diminished following the probe. The load dependence and the tight temporal regulation of alpha provide strong evidence that the alpha generating system is directly or indirectly linked to the circuits responsible for working memory. Although a clear peak in the theta band (5-8 Hz) was only detectable in one subject, other lines of evidence indicate that theta occurs and also has a role in working memory. Hypotheses concerning the role of alpha band activity in working memory are discussed.

Original publication

DOI

10.1093/cercor/12.8.877

Type

Journal article

Journal

Cereb Cortex

Publication Date

08/2002

Volume

12

Pages

877 - 882

Keywords

Adolescent, Adult, Alpha Rhythm, Cerebral Cortex, Female, Humans, Male, Memory, Short-Term, Retention, Psychology