Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

While humans typically saccade every ∼250 ms in natural settings, studies on vision tend to prevent or restrict eye movements. As it takes ∼50 ms to initiate and execute a saccade, this leaves only ∼200 ms to identify the fixated object and select the next saccade goal. How much detail can be derived about parafoveal objects in this short time interval, during which foveal processing and saccade planning both occur? Here, we had male and female human participants freely explore a set of natural images while we recorded magnetoencephalography and eye movements. Using multivariate pattern analysis, we demonstrate that future parafoveal images could be decoded at the feature and category level with peak decoding at ∼110 and ∼165 ms, respectively, while the decoding of fixated objects at the feature and category level peaked at ∼100 and ∼145 ms. The decoding of features and categories was contingent on the objects being saccade goals. In sum, we provide insight on the neuronal mechanism of presaccadic attention by demonstrating that feature- and category-specific information of foveal and parafoveal objects can be extracted in succession within a ∼200 ms intersaccadic interval. These findings rule out strict serial or parallel processing accounts but are consistent with a pipeline mechanism in which foveal and parafoveal objects are processed in parallel but at different levels in the visual hierarchy.

Original publication

DOI

10.1523/JNEUROSCI.0841-24.2024

Type

Journal article

Journal

J Neurosci

Publication Date

04/12/2024

Volume

44

Keywords

classification, foveal processing, free visual exploration, object categorization, parafoveal processing, pipelining mechanism, Humans, Male, Female, Adult, Fovea Centralis, Magnetoencephalography, Saccades, Young Adult, Photic Stimulation, Attention, Fixation, Ocular, Visual Perception, Pattern Recognition, Visual, Eye Movements