Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Healthy brain function depends on balancing stable integration between brain areas for effective coordinated functioning, with coexisting segregation that allows subsystems to express their functional specialization. Metastability, a concept from the dynamical systems literature, has been proposed as a key signature that characterizes this balance. Building on this principle, the neuroscience literature has leveraged the phenomenon of metastability to investigate various aspects of brain function in health and disease. However, this body of work often uses the notion of metastability heuristically, and sometimes inaccurately, making it difficult to navigate the vast literature, interpret findings and foster further development of theoretical and experimental methodologies. Here, we provide a comprehensive review of metastability and its applications in neuroscience, covering its scientific and historical foundations and the practical measures used to assess it in empirical data. We also provide a critical analysis of recent theoretical developments, clarifying common misconceptions and paving the road for future developments.

Original publication

DOI

10.1038/s41583-024-00883-1

Type

Journal article

Journal

Nat Rev Neurosci

Publication Date

11/12/2024