Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The brain needs to perform time-critical computations to ensure survival. A potential solution lies in the nonlocal, distributed computation at the whole-brain level made possible by criticality and amplified by the rare long-range connections found in the brain's unique anatomical structure. This nonlocality can be captured by the mathematical structure of Schrödinger's wave equation, which is at the heart of the complex harmonics decomposition (CHARM) framework that performs the necessary dimensional manifold reduction able to extract nonlocality in critical spacetime brain dynamics. Using a large neuroimaging dataset of over 1000 people, CHARM captured the critical, nonlocal and long-range nature of brain dynamics and the underlying mechanisms were established using a precise whole-brain model. Equally, CHARM revealed the significantly different critical dynamics of wakefulness and sleep. Overall, CHARM is a promising theoretical framework for capturing the low-dimensionality of the complex network dynamics observed in neuroscience and provides evidence that networks of brain regions rather than individual brain regions are the key computational engines of critical brain dynamics.

Original publication

DOI

10.1103/PhysRevE.111.014410

Type

Journal article

Journal

Physical Review E

Publication Date

01/01/2025

Volume

111