Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A growing body of experimental evidence suggests that functional connectivity at rest is shaped by the underlying anatomical structure. Furthermore, the organizational properties of resting-state functional networks are thought to serve as the basis for an optimal cognitive integration. A disconnection at the structural level, as occurring in some brain diseases, would then lead to functional and presumably cognitive impairments. In this work, we propose a computational model to investigate the role of a structural disconnection (encompassing putative local/global and axonal/synaptic mechanisms) on the organizational properties of emergent functional networks. The brain's spontaneous neural activity and the corresponding hemodynamic response were simulated using a large-scale network model, consisting of local neural populations coupled through white matter fibers. For a certain coupling strength, simulations reproduced healthy resting-state functional connectivity with graph properties in the range of the ones reported experimentally. When the structural connectivity is decreased, either globally or locally, the resultant simulated functional connectivity exhibited a network reorganization characterized by an increase in hierarchy, efficiency and robustness, a decrease in small-worldness and clustering and a narrower degree distribution, in the same way as recently reported for schizophrenia patients. Theoretical results indicate that most disconnection-related neuropathologies should induce the same qualitative changes in resting-state brain activity.

Original publication

DOI

10.1016/j.neuroimage.2012.06.007

Type

Journal article

Journal

Neuroimage

Publication Date

09/2012

Volume

62

Pages

1342 - 1353

Keywords

Brain, Humans, Models, Neurological, Nerve Net, Neural Pathways, Schizophrenia