Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Effective fetal growth requires adequate maternal nutrition coupled to active transport of nutrients across the placenta, which, in turn requires ATP. Epidemiological and experimental evidence has shown that impaired maternal nutrition in utero results in an adverse postnatal phenotype for the offspring. Placental mitochondrial function might link maternal food intake to fetal growth since impaired placental ATP production, in response to poor maternal nutrition, could be a pathway linking maternal food intake to reduced fetal growth. METHOD: We assessed the effects of maternal diet on placental water content, ATP levels and mitochondrial DNA (mtDNA) content in mice at embryonic (E) day 18 (E18). Females maintained on either low- (LPD) or normal- (NPD) protein diets were mated with NPD males. RESULTS: Fetal dry weight and placental efficiency (embryo/placental fresh weight) were positively correlated (r = 0.53, P = 0.0001). Individual placental dry weight was reduced by LPD (P = 0.003), as was the expression of amino acid transporter Slc38a2 and of growth factor Igf2. Placental water content, which is regulated by active transport of solutes, was increased by LPD (P = 0.0001). However, placental ATP content was also increased (P = 0.03). To investigate the possibility of an underlying mitochondrial stress response, we studied cultured human trophoblast cells (BeWos). High throughput imaging showed that amino acid starvation induces changes in mitochondrial morphology that suggest stress-induced mitochondrial hyperfusion. This is a defensive response, believed to increase mitochondrial efficiency, that could underlie the increase in ATP observed in placenta. CONCLUSIONS: These findings reinforce the pathophysiological links between maternal diet and conceptus mitochondria, potentially contributing to metabolic programming. The quiet embryo hypothesis proposes that pre-implantation embryo survival is best served by a relatively low level of metabolism. This may extend to post-implantation trophoblast responses to nutrition.

Original publication

DOI

10.1371/journal.pone.0130631

Type

Journal article

Journal

PLoS One

Publication Date

2015

Volume

10

Keywords

Adenosine Triphosphate, Amino Acids, Animals, Cell Line, Diet, Protein-Restricted, Dietary Proteins, Female, Fetal Development, Humans, Male, Mice, Mice, Inbred C57BL, Mitochondria, Placenta, Pregnancy, Trophoblasts