Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: We examined the effect of the novel Alzheimer's disease (AD) risk variant rs11136000 single nucleotide polymorphism in the clusterin gene (CLU) on longitudinal changes in resting state regional cerebral blood flow (rCBF) during normal aging and investigated its influence on cognitive decline in presymptomatic stages of disease progression. METHODS: Subjects were participants in the Baltimore Longitudinal Study of Aging. A subset of 88 cognitively normal older individuals had longitudinal (15)O-water positron emission tomography measurements of rCBF at baseline and up to eight annual follow-up visits. We also analyzed trajectories of cognitive decline among CLU risk carriers and noncarriers in individuals who remained cognitively normal (n = 599), as well as in those who subsequently converted to mild cognitive impairment or AD (n = 95). RESULTS: Cognitively normal carriers of the CLU risk allele showed significant and dose-dependent longitudinal increases in resting state rCBF in brain regions intrinsic to memory processes. There were no differences in trajectories of memory performance between CLU risk carriers and noncarriers who remained cognitively normal. However, in cognitively normal individuals who eventually converted to mild cognitive impairment or AD, CLU risk carriers showed faster rates of decline in memory performance relative to noncarriers in the presymptomatic stages of disease progression. CONCLUSIONS: The AD risk variant CLU influences longitudinal changes in brain function in asymptomatic individuals and is associated with faster cognitive decline in presymptomatic stages of disease progression. These results suggest mechanisms underlying the role of CLU in AD and may be important in monitoring disease progression in at-risk elderly.

Original publication




Journal article


Biol Psychiatry

Publication Date





399 - 405


Aged, Aged, 80 and over, Aging, Alleles, Alzheimer Disease, Brain, Cerebrovascular Circulation, Clusterin, Cognition, Disease Progression, Female, Genetic Predisposition to Disease, Genotype, Humans, Longitudinal Studies, Male, Memory, Middle Aged, Neuropsychological Tests, Polymorphism, Single Nucleotide, Radionuclide Imaging