Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A priming-challenge schedule of nicotine treatment causes long-lasting potentiation (LLP), a form of synaptic plasticity closely associated with the norepinephrine (NE) neurotransmitter system, at the medial perforant path (MPP)-dentate gyrus (DG) synapse in the rat hippocampus. Previous reports revealed that nicotine activates the locus coeruleus (LC) noradrenergic (NAergic) system and this mechanism may underlie its beta-adrenoceptor sensitive LLP effects. Clozapine, an atypical antipsychotic, is also known to activate the LC. Interactions between nicotine and clozapine are of interest because of the prevalence of smoking in patients with schizophrenia and increasing interest in the use of nicotinic receptor ligands as cognitive enhancers. Rats were subchronically primed with nicotine, clozapine or saline. Twenty-one to twenty-eight days later, the effects of the nicotine, clozapine or saline challenge on the evoked field excitatory postsynaptic potentials (fEPSP) at the MPP-DG monosynaptic pathway were recorded as a measure of LLP. We confirmed the hypothesis that a challenge dose of either nicotine or clozapine induces LLP exclusively in nicotine- and clozapine-primed rats, and not in saline-primed rats, thus indicating a cross-priming effect. Moreover, unilateral suppression of LC using lidocaine abolished the LLP induced by nicotine in clozapine-primed rats. Furthermore, systemic treatment with clonidine (an α2 adrenoceptor agonist that reduces NAergic activity via autoreceptors) prior to the challenge doses blocked the nicotine/clozapine-induced LLP in nicotine- and clozapine-primed rats. These findings may add to understanding of the cognitive enhancing effects of nicotine.

Original publication

DOI

10.1002/hipo.22122

Type

Journal article

Journal

Hippocampus

Publication Date

07/2013

Volume

23

Pages

616 - 624

Keywords

Animals, Antipsychotic Agents, Clozapine, Electrophysiology, Excitatory Postsynaptic Potentials, Hippocampus, Locus Coeruleus, Long-Term Potentiation, Male, Nicotine, Nicotinic Agonists, Rats, Rats, Sprague-Dawley