Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

1. Using whole-cell and perforated-patch recordings, we have examined the part played by endogenous G-protein beta gamma subunits in neurotransmitter-mediated inhibition of N-type Ca2+ channel current (ICa) in dissociated rat superior cervical sympathetic neurones. 2. Expression of the C-terminus domain of beta-adrenergic receptor kinase 1 (beta ARK1), which contains the consensus motif (QXXER) for binding G beta gamma, reduced the fast (pertussis toxin (PTX)-sensitive) and voltage-dependent inhibition of ICa by noradrenaline and somatostatin, but not the slow (PTX-insensitive) and voltage-independent inhibition induced by angiotensin II. beta ARK1 peptide reduced GTP-gamma-S-induced voltage-dependent and PTX-sensitive inhibition of ICa but not GTP-gamma-S-mediated voltage-independent inhibition. 3. Overexpression of G beta 1 gamma 2, which mimicked the voltage-dependent inhibition by reducing ICa density and enhancing basal facilitation, occluded the voltage-dependent noradrenaline- and somatostatin-mediated inhibitions but not the inhibition mediated by angiotensin II. 4. Co-expression of the C-terminus of beta ARK1 with beta 1 and gamma 2 subunits prevented the effects of G beta gamma dimers on basal Ca2+ channel behaviour in a manner consistent with the sequestering of G beta gamma. 5. The expression of the C-terminus of beta ARK1 slowed down reinhibition kinetics of ICa following conditioning depolarizations and induced long-lasting facilitation by cumulatively sequestering beta gamma subunits. 6. Our findings identify endogenous G beta gamma as the mediator of the voltage-dependent, PTX-sensitive inhibition of ICa induced by both noradrenaline and somatostatin but not the voltage-independent. PTX-insensitive inhibition by angiotensin II. They also support the view that voltage-dependent inhibition results from a direct G beta gamma-Ca2+ channel interaction.


Journal article


J Physiol

Publication Date



506 ( Pt 2)


319 - 329


Angiotensin II, Animals, Calcium Channels, Cyclic AMP-Dependent Protein Kinases, Electrophysiology, GTP-Binding Proteins, Gene Expression, Guanosine 5'-O-(3-Thiotriphosphate), Humans, Ion Channel Gating, Kinetics, Neurons, Neurotransmitter Agents, Norepinephrine, Pertussis Toxin, Rats, Rats, Sprague-Dawley, Receptors, Adrenergic, alpha, Receptors, Somatostatin, Recombinant Proteins, Somatostatin, Superior Cervical Ganglion, Time Factors, Virulence Factors, Bordetella, beta-Adrenergic Receptor Kinases