Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

White matter hyperintensities (WMHs, or lesions) appear as hyperintense, localized regions on T2-weighted and FLAIR brain MR images. The heterogeneity in lesion characteristics due to subject-level (e.g., local intensity/contrast) and population-level (e.g., demographic, scanner-related) variations make their segmentation highly challenging. Here, we propose a framework for adapting a state-of-the-art WMH segmentation method with high accuracy from a small, labeled source data (MICCAI WMH segmentation challenge 2017 training data) to a larger dataset such as the UK Biobank without the need of additional manual training labels, using domain adversarial training with omni-supervised learning. Given the well-known association of WMHs with age, the proposed method uses a multi-tasking model for learning lesion segmentation, domain adaptation and age prediction simultaneously. On a subset of the UK Biobank dataset, the proposed method achieves a lesion-level recall, lesion-level F1-measure and Dice overlap value of 0.95, 0.65 and 0.84 respectively, when compared to values of 0.75, 0.49 and 0.80 obtained from the pretrained state-of-the-art baseline method. The code for the method is available at https://github.com/v-sundaresan/omnisup_agepred_semidann.

Original publication

DOI

10.1109/ISBI52829.2022.9761539

Type

Conference paper

Publisher

IEEE

Publication Date

26/04/2022

Pages

1 - 4

Keywords

FFR