Perception, illusions and Bayesian inference.
Nour MM., Nour JM.
Descriptive psychopathology makes a distinction between veridical perception and illusory perception. In both cases a perception is tied to a sensory stimulus, but in illusions the perception is of a false object. This article re-examines this distinction in light of new work in theoretical and computational neurobiology, which views all perception as a form of Bayesian statistical inference that combines sensory signals with prior expectations. Bayesian perceptual inference can solve the 'inverse optics' problem of veridical perception and provides a biologically plausible account of a number of illusory phenomena, suggesting that veridical and illusory perceptions are generated by precisely the same inferential mechanisms.