Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The quantitative geneticist W. G. ('Bill') Hill, awardee of the 2018 Darwin Medal of the Royal Society and the 2019 Mendel Medal of the Genetics Society (United Kingdom), died on 17 December 2021 at the age of 81 years. Here, we pay tribute to his multiple key scientific contributions, which span population and evolutionary genetics, animal and plant breeding and human genetics. We discuss his theoretical research on the role of linkage disequilibrium (LD) and mutational variance in the response to selection, the origin of the widely used LD metric r2 in genomic association studies, the genetic architecture of complex traits, the quantification of the variation in realized relationships given a pedigree relationship and much more. We demonstrate that basic theoretical research in quantitative and statistical genetics has led to profound insights into the genetics and evolution of complex traits and made predictions that were subsequently empirically validated, often decades later.

Original publication




Journal article


Nat Genet

Publication Date





934 - 939


Animals, Genome, Genome-Wide Association Study, Genomics, Humans, Linkage Disequilibrium, Plant Breeding