Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The genome-wide association study (GWAS) has been widely used as an experimental design to detect associations between genetic variants and a phenotype. Two major confounding factors, population stratification and relatedness, could potentially lead to inflated GWAS test statistics and hence to spurious associations. Mixed linear model (MLM)-based approaches can be used to account for sample structure. However, genome-wide association (GWA) analyses in biobank samples such as the UK Biobank (UKB) often exceed the capability of most existing MLM-based tools especially if the number of traits is large. Here, we develop an MLM-based tool (fastGWA) that controls for population stratification by principal components and for relatedness by a sparse genetic relationship matrix for GWA analyses of biobank-scale data. We demonstrate by extensive simulations that fastGWA is reliable, robust and highly resource-efficient. We then apply fastGWA to 2,173 traits on array-genotyped and imputed samples from 456,422 individuals and to 2,048 traits on whole-exome-sequenced samples from 46,191 individuals in the UKB.

Original publication

DOI

10.1038/s41588-019-0530-8

Type

Journal article

Journal

Nat Genet

Publication Date

12/2019

Volume

51

Pages

1749 - 1755

Keywords

Biological Specimen Banks, Body Mass Index, Data Interpretation, Statistical, Genome-Wide Association Study, Humans, Linear Models, Linkage Disequilibrium, Models, Genetic, Polymorphism, Single Nucleotide, Software, United Kingdom, Exome Sequencing