Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mass-univariate association analyses aim at mapping the brain regions associated with a trait/disorder. The correlation between vertices may cause a true association to spread locally (cluster of association) or distally (false positive cluster). We previously showed that controlling for all vertices in the model (using a linear mixed model: LMM), could greatly reduce the probability of false positive and improve mapping precision. Here, we investigated a new LMM called MOMENT which reduces false positive rate in methylome-wide association studies. Compared to LMM, MOMENT had enhanced power and mapping precision but failed at reducing the rates of false positives clusters.The increasing sample sizes from neuroimaging studies should allow detection of image measures are associated with phenotypic traits with smaller effect sizes, which will advance progress in the mapping of the brain regions associated with traits and diseases [1]. The UK Biobank (UKB) is one of the best example of this new generation of samples [2]. Multimodal Brain MRI collection is currently ongoing, with tens of thousands of individuals already imaged out of a target of 100,000 [2]. The large sample size, together with the breadth of phenotyping (incl. self-reports, in lab assessments, prescription and medical history), should allow new insights into the factors contributing to brain differences between older adults.

Original publication

DOI

10.1117/12.2581022

Type

Conference paper

Publication Date

01/01/2021

Volume

11596