Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The past 5 years have witnessed significant advances in our ability to introduce genes into the genomes of insects of medical and agricultural importance. A number of transposable elements now exist that are proving to be sufficiently robust to allow genetic transformation of species within three orders of insects. In particular all of these transposable elements can be used genetically to transform mosquitoes. These developments, together with the use of suitable genes as genetic markers, have enabled several genes and promoters to be transferred between insect species and their effects on the phenotype of the transgenic insect determined. Within a very short period of time, insights into the function of insect promoters in homologous and heterologous insect species are being gained. Furthermore, strategies aimed at ameliorating the harmful effects of pest insects, such as their ability to vector human pathogens, are now being tested in the pest insects themselves. We review the progress that has been made in the development of transgenic technology in pest insect species and conclude that the repertoire of transposable element-based genetic tools, long available to Drosophila geneticists, can now be applied to other insect species. In addition, it is likely that these developments will lead to the generation of pest insects that display a significantly reduced ability to transmit pathogens in the near future.

Original publication




Journal article


Adv Genet

Publication Date





49 - 86


Animals, Animals, Genetically Modified, DNA Transposable Elements, DNA-Binding Proteins, Drosophila Proteins, Female, Genetic Vectors, Insecta, Male, Models, Genetic, Promoter Regions, Genetic, RNA-Binding Proteins, Species Specificity, Transposases