Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Covert attention to spatial locations in the visual field is a relatively new control signal for brain-computer interfaces. Previous EEG research has shown that trials can be classified by thresholding based on left and right hemisphere alpha power in covert spatial attention paradigms. We reexamine the covert attention paradigm based on MEG measurements for fifteen subjects. It is shown that classification performance can be improved by applying sparse logistic regression in order to select a subset of the sensors specific to each subject as the basis for classification. Furthermore, insight is gained into how classification performance changes as a function of the length of the attention period and as a function of the number of trials. Classification performance steadily increases as the length of the attention period over which is averaged is increased, although this does not necessarily translate into higher bit rates. Good classification performance using early components of the attention period may be related to evoked response. With regard to the number of used trials, classification performance became maximal after 150 samples had been obtained, requiring a training time of approximately eleven minutes under the current experimental paradigm.

Original publication

DOI

10.1016/j.neunet.2009.06.004

Type

Journal article

Journal

Neural Netw

Publication Date

11/2009

Volume

22

Pages

1271 - 1277

Keywords

Adult, Algorithms, Alpha Rhythm, Attention, Brain, Brain Mapping, Female, Humans, Information Theory, Logistic Models, Magnetoencephalography, Male, Signal Processing, Computer-Assisted, Space Perception, Time Factors, User-Computer Interface