Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Previous analysis of the firing of individual rat hippocampal place cells has shown that their firing rate increases when they enter a place field and that their phase of firing relative to the ongoing theta oscillation (7-12 Hz) varies systematically as the rat traverses the place field, a phenomenon termed the theta phase precession. To study the relative contribution of phased-coded and rate-coded information, we reconstructed the animal's position on a linear track using spikes recorded simultaneously from 38 hippocampal neurons. Two previous studies of this kind found no evidence that phase information substantially improves reconstruction accuracy. We have found that reconstruction is improved provided epochs with large, systematic errors are first excluded. With this condition, use of both phase and rate information improves the reconstruction accuracy by >43% as compared with the use of rate information alone. Furthermore, it becomes possible to predict the rat's position on a 204-cm track with very high accuracy (error of <3 cm). The best reconstructions were obtained with more than three phase divisions per theta cycle. These results strengthen the hypothesis that information in rat hippocampal place cells is encoded by the phase of theta at which cells fire.

Original publication

DOI

10.1152/jn.2000.83.5.2602

Type

Journal article

Journal

J Neurophysiol

Publication Date

05/2000

Volume

83

Pages

2602 - 2609

Keywords

Action Potentials, Algorithms, Animals, Bayes Theorem, Behavior, Animal, Electrodes, Implanted, Electroencephalography, Hippocampus, Maze Learning, Models, Neurological, Predictive Value of Tests, Rats, Space Perception, Theta Rhythm