Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Vividly imagining a song or a melody is a skill that many people accomplish with relatively little effort. However, we are only beginning to understand how the brain represents, holds, and manipulates these musical "thoughts." Here, we decoded perceived and imagined melodies from magnetoencephalography (MEG) brain data (N = 71) to characterize their neural representation. We found that, during perception, auditory regions represent the sensory properties of individual sounds. In contrast, a widespread network including fronto-parietal cortex, hippocampus, basal nuclei, and sensorimotor regions hold the melody as an abstract unit during both perception and imagination. Furthermore, the mental manipulation of a melody systematically changes its neural representation, reflecting volitional control of auditory images. Our work sheds light on the nature and dynamics of auditory representations, informing future research on neural decoding of auditory imagination.

Original publication

DOI

10.1371/journal.pbio.3002858

Type

Journal article

Journal

PLoS Biol

Publication Date

10/2024

Volume

22

Keywords

Humans, Music, Imagination, Magnetoencephalography, Auditory Perception, Male, Female, Adult, Young Adult, Acoustic Stimulation, Brain Mapping, Sound, Brain, Auditory Cortex